Integrating GIS with Pipeline Simulation Software

Clay Noble – Targa Resources
Michael Istre – Gregg Engineering

Targa Resources

• One of the largest independent providers of integrated natural gas and NGL midstream services in the United States
• 11,300 miles of gas gathering and NGL pipelines
• 22 gas processing plants
• 10 billion cubic feet per day of capacity
Gregg Engineering

- A leading developer of Pipeline Simulation Software for all types of pipeline systems
- First company to develop a PC-based Pipeline Simulator
- A leading provider of pipeline engineering services, including design and optimization

The Situation in 1996

- Purchased Gregg Engineering WinFlow to simulate gathering systems
- Consultant hired to create WinFlow models
- Consultant found errors in paper maps
- Pipeline simulation model completed
- No way to update maps from models
The Plan in 1997

- Test making maps from GIS
- Test making models from GIS
- If successful, integrate GIS and Pipeline Simulation
- Make corrections once
- Make a return on investment from GIS and simulations

Pipeline Simulations

- Simulate the flow of natural gas and liquids in a pipeline system.
- Analyze current operations
- Predict flows and pressures under new conditions
- Design new pipeline systems
- Optimize existing pipeline systems
Pipeline Simulation

- Mathematical model
- Based on network of nodes and legs
- Solved for a set of flows and pressures
- Calculated flows and pressures compared to actual values
- Good model will predict operations at other conditions

Important Modeling Considerations

- Flows - Material balance
 - Know ALL flows into and out of system
 - Don’t mix flow data from different time periods
- Network connectivity
- Leg parameters
- Flow properties
- Elevations
GIS Study 1998

- Proof of Concept
 - Create maps from GIS
 - Create models from GIS
- Develop enterprise GIS strategy
- Identify and decide issues
- Test processes to clean up GIS data
- Analyze cost and benefits of corporate GIS

AutoCAD or GIS

- GIS selected
 - ESRI ArcView 3.1 for desktop GIS
 - ESRI SDE on Oracle database for data storage
 - ESRI ArcIMS for corporate display
- Put ALL non-flow simulation data in GIS
- Eliminate dual AutoCAD map and GIS
- Convert maps to GIS
Cartographic Displacement

• Options
 – Maintain fixed scale cartographic displacement in GIS
 – Maintain geographically accurate locations in GIS
 – Keep two sets of data
 – Cartographic displacement on fly not available
• Decision – Only maintain geographic locations
• Initially unhappy paper map users
• Ultimately right decision

Dynamic Segmentation

• To use or not to use dynamic segmentation (stationing or measures)
• New technology in 1998
• Very little gathering pipe ever stationed
• Difficult to use with gathering systems
• Chose simple snapped points and polylines
• Unique GIS polyline for each leg in model
Pipeline Data Models

- PODS and ISAT based on stationing
- Tried stationing and PODS but too difficult
- No stationing meant no PODS or ISAT
- Developed proprietary data model
- APDM not available at time
- APDM also based on stationing

Topology (Connectivity)

- Pipeline simulation model based on network
- ESRI Network Analyst not developed at time
- Used simple network model with few rules
 - Network consist of nodes (points or simple junctions) and legs or segments (simple edge polylines)
 - Nodes and legs visually snapped together
GIS, Measurement & Simulation Data

• Still considerable discussion in gathering industry: What data belongs in GIS
• We decided to put **ALL** non-flow modeling data in GIS
• New polyline whenever attribute data changes
• We linked the flow data to GIS using unique measurement ID’s

Topology Cleanup

• Network topology is essential
• Need all pipe in GIS
• Need all pipe correctly connected
• Built visual topology cleanup tools based on snapping
• Tried error fixing and tracing – both tedious
• Avoid global snapping
ArcView Extension Tools

- Cut, copy and paste
- Point and polyline snapping
- Polyline connectivity check
- Multipart and duplicate check
- Point and polyline snap check
- Now mostly part of ArcGIS 9.2

GIS to WinFlow (Old method)

- Export ASCII CSV node, leg and flow files from ArcView
- Use WinFlow DataManager script to create model from CSV files
- Worked great
GIS to WinFlow (New Method)

- WinFlow has ShapeFile import / export tool built-in
- Uses ShapeFiles instead of CSV files
- Easier to run back and forth or simultaneously
- Gregg has built a set of tools to check and fix connectivity

Conclusion

- Integrating GIS and Pipeline Simulation is practical and cost effective
- GIS and Pipeline Simulation helps us operate, optimize and expand our gathering system
- No magic bullet to cleanup GIS data
- We made right decisions and would not change a thing
Future Plans

- Continuing to enhance and expand our GIS
- Continuing to improve GIS update process
- Working on tighter GIS and WinFlow integration
- Gregg Engineering developing GIS cleanup process
- Develop practical multiphase gathering system Pipeline Simulation using elevations and improved liquid hold prediction