

<section-header><list-item><list-item><list-item><list-item><list-item>

This presentation

- Focus mainly on description and capture of data in the form of hand-made paper maps.
- Briefly describe a workflow proposal of a mobile mapping application setup using the captured data.

Heritage 2 - Gathering Map

Regional coverage

Centurion Pipeline L.P

- 1":3000'
- 137 maps

Heritage 2 - Gathering Map

- Map
 - Regional coverage
 - 1":3000'

GeoGathering 2008

GeoGathering 2008

- Land sections
- Jeffersonian PLSS based grid

Heritage 2 - Section Plat

GeoGathering 2008

– Jeffersonian PLSS

Centurion Pipeline L

- based
- 1":300'
- Single origin
- 1420 maps

Heritage 2 - Section Plat

	Heritage 3	Heritage 1	Heritage 2	Heritage 2
Мар Туре	Field Map	400' Map	Gathering Map	Section Plat
Coverage	Complete or half GS	1 sq mi; approx a land section	Complete GS	1 sq mi; approx a land section
Scale	1":1000'	1":400'	1":3000', usually no scale shown	1':300"
Paper Size	42" x 64"	15" x 18"	Various	21"x 21"
Locator grid	No	N-W nomenclature with various origins	No	N-W nomenclature with a single origin
Pipe Info	Diameter, length, status	Diameter, length, status	Diameter, length, status	Diameter, length, status
Background Info	PLSS	PLSS, ownership	PLSS	PLSS
Coordinates	No	No	No	No
Index Map	No	No	Yes	Yes
Detail	At upper and lower margins	As separate pages	No	Integrated with map

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

Conclusions

- Analysis of original data helps in higher quality of input data
- A clear definition of the sources of pipeline geometry and attributes, background info and details allowed for a more efficient data structure design and a better capture process.
- An inspection of the overall original map organization improved the georectification method selection
- Wider area maps are less detailed but have better geometric integrity.
- Smaller area maps can be more accurate but were harder to maintain.
- A mobile mapping solution needs to count on users input.

