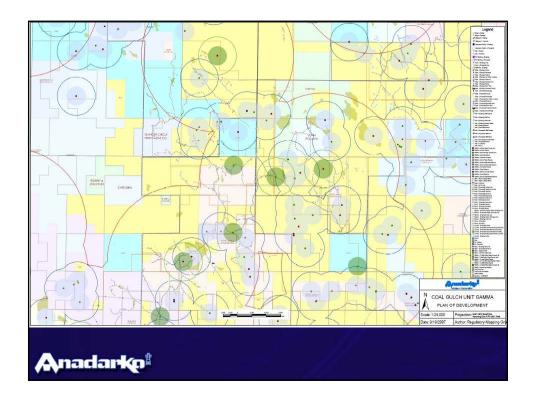


What We'll Cover: Overview Coal Bed Methane (CBM) permitting The pre-project state The desired state Technology challenges Conclusions Anadar≰n ♣

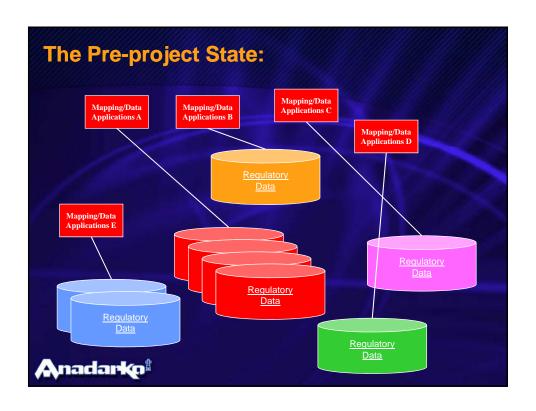
Permitting for Coal Bed Methane (CBM):

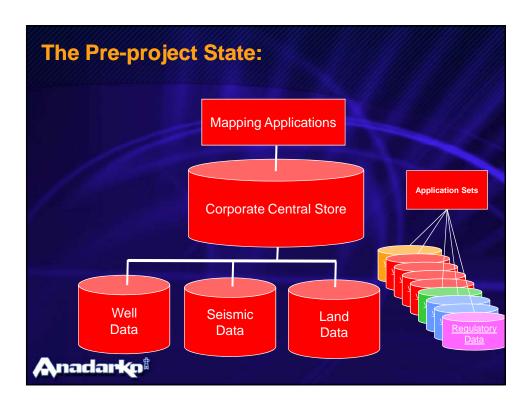

- CBM is an important part of Anadarko's business.
- CBM permitting is different
 - Accelerated development
 - Specific requirements
 - Significant restrictions

Anadarko[‡]

Permitting for Coal Bed Methane (CBM):

- Creating a Plan Of Development (POD):
 - Leasehold secured
 - Multiple surveys (wildlife, vegetation, proposed access, etc.) are conducted by consultants as allowed by access constraints.
 - Survey data are collated by the Regulatory Permitting Team mappers.
 - Required maps and reports are assembled to BLM specifications and submitted for approval.
 - May require adjustments to meet BLM requirements.
 - POD is developed as permitted and planned.

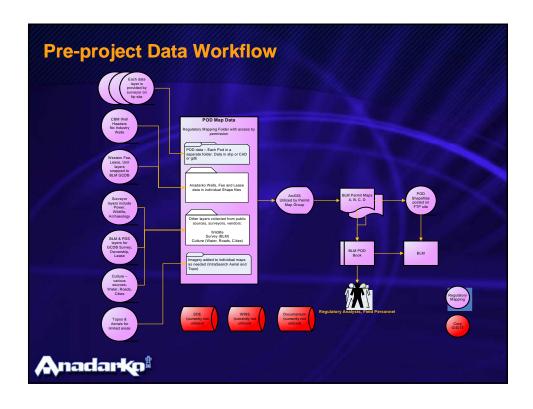

Anadarko[®]

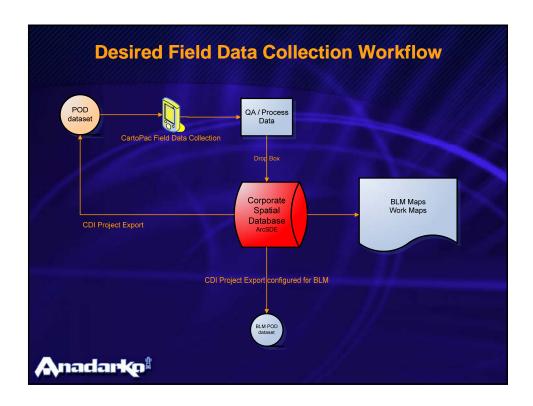


The Pre-project State:

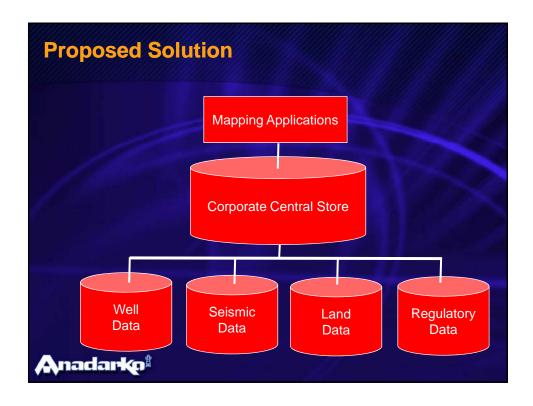
- Over time, data were collected and supplied in several applications, formats and schemas.
- Each POD was assembled as a project.
- POD project files were kept in disparate locations on disk. Over time these locations were changed due to several factors.
- Result:
 - Hard to find data
 - Often requires format conversion
 - Inconsistent schemas (or none at all)
 - Almost impossible to map several PODs

The Pre-project State:


- Results
 - Inconsistent data
 - Long cycle time for BLM Permit approval
 - Overwhelming workload
- Effects
 - Hindrance to expanding mapping throughout lifecycle.
 - Hindrance to expanding mapping support geographically.
 - Hindrance to compliance with Onshore Order Number 1 request for digital data submissions.
 - Necessitates excessive collaboration among individuals in multiple offices


The Pre-project State:

- Challenges include:
 - Collecting and visualizing the information is a complex task.
 - Gathering and symbolizing the infrastructure for one POD is tedious.
 - Creating an overview map of POD projects is difficult, lengthy and non-performant.
 - The process for the permit mapping has not been efficient and repeatable.
 - A solution must also be scalable to support mapping throughout the lifecycle of managing oil and gas field assets.



Proposed Solution

- Treat Permit Data no differently to other E&P spatial data types at Anadarko (e.g. Land, Seismic, Wells, Pipeline, etc)
- Centralize in a secure store with other corporate data, accessible to multiple users.
- Empower users with applications to access and map this data. Depending on mapping skills and needs, web-based and desktop.
- Provide Permit Mapping group with the tools and processes to load and manage permit data

Technology Hurdles Design data model Field Data Collection in the standard data model Centralize data storage Synchronize incremental field data with central

repository

Deliver digital maps to remote offices

Anadarko

Technology Hurdles

- Design data model
- Field Data Collection in the standard data model
- Centralize data storage
- Synchronize incremental field data with central repository
- Deliver digital maps to remote offices

Anadarko[‡]

Regulatory Data Model Goals

- Standard Fields for all types of Data
- Additional Fields for specific data types
- Standard lookup lists (domains)
- Standard Symbology (subtypes & style library)
- Store all data for entire lifecycle in one model

Anadarko[®]

Field Data Collection Challenges

- Platform
 - Cartopac developed on Mapping Grade (Windows OS) platform
 - Workflow to collecting data using Survey Grade GPS
 - Memory using roles and activities to reduce memory demands
- Simultaneous Data collection
 - Cannot collect multiple features simultaneously
 - Designing forms and symbols to record complex information during a single feature collection process (Corridors)
- Data Model Updates
 - Additions must go through change control cannot dynamically add to the database – using 'OTHER' to capture additions
 - Discovered differences in historical field data collection and future usage standards

Conclusion

- Field Data collection of standard data model supports the full lifecycle of mapping and data usability
- Standards drive scalability, maintainability and usability:
 - · Standard data model
 - Standard field collection process
 - Standard symbology
 - Standard lookup tables
 - Standard maps
- Performance is critical
- Training is critical

The Regulatory Group: Liz Garcia, Keven Kelley, Steve Kempe, Steve Kinnamon, Ashley Mott, Ethan Jahnke, Mary Mondragon for some good ideas we didn't think of. Field Users: Tammi Hitt, Joy Kennedy, Tami Henry, Colleen Faber, Shane Gasvoda, Colt Rodeman and others who have given us reality checks. GIS Team: Kevin Shows, Jia Liu, Charles Vickers and Justin Piwetz for the behind the scenes magic. Vicki Phelps and Richard Venn for project management. Mike Dunnington (Denver support) Field Data Collection: Mike Harris, Barry Walter, Glenn Vlass (SDT), Mark Saunders (SDT)

Anadarko[®]

